Cone Clamping Elements RLK 250 L

centres the hub to the shaft
quick assembly

Features
• Centres the hub to the shaft
• Radial flat height is particularly suitable for small hub outer diameters
• Quick assembly by central groove nut
• Transmissible torque of 74 Nm up to 1,500 Nm
• For shaft diameters between 15 mm and 70 mm

Application example
Backlash free connection of a hollow shaft with a Cone Clamping Element RLK 250 L. The Cone Clamping Element centres the hollow shaft on the shaft. Due to the flat radial height of the Cone Clamping Element, the hollow shaft can be designed thin walled.

Transmissible torques and axial forces
The transmissible torques or axial forces listed on the following page are subject to the following tolerances, surface characteristics and material requirements. Please contact us in the case of deviations.

Tolerances
• h8 for shaft diameter d
• H8 for hub bore D

Surfaces
Average surface roughness at the contact surfaces between the shaft and the hub bore: \(R_z = 10 \ldots 25 \, \mu m \).

Materials
The following apply to the shaft and the hub:
• E-module \(\geq 170 \, kN/mm^2 \)

Installation
Please request our installation and operating instructions for Cone Clamping Elements RLK 250 L.

Simultaneous transmission of torque and axial force
The transmissible torques \(M \) which are shown in the tables apply for axial forces \(F = 0 \, kN \) and conversely, the indicated axial forces \(F \) apply to torques \(M = 0 \, Nm \). If torque and axial force are to be transmitted simultaneously, the transmissible torque and the transmissible axial force are reduced. Please refer to the technical points on pages 72 and 73.

Example for ordering
Cone Clamping Element RLK 250 L for shaft diameter \(d = 50 \, mm \):
• RLK 250 L, size 50 x 60
Article number 4202-050002-000000
Cone Clamping Elements RLK 250 L

centres the hub to the shaft
quick assembly

If the hub cannot be freely moved to the left, e.g. due to a shaft shoulder, the values for M, F, P_W, and P_H are reduced by 37%. In this case, the required hub outer diameter K_{min} and the required hub width N_{min} may be lower than indicated.