Cone Clamping Elements RLK 130

-centres the hub to the shaft
-very high transmissible torques

Features

- Centres the shaft to the hub
- Very high transmissible torques
- Transmissible torque of 580 Nm up to 70,000 Nm
- For shaft diameters between 20 mm and 180 mm

Application example

Backlash free connection of an eccentric lift unit and a sprocket to the drive shaft of a hoisting device using Cone Clamping Elements RLK 130. The eccentric force applied to the eccentric lift unit results in the Cone Clamping Element transmitting not only torque, but also forces and bending moments.

Transmissible torques and axial forces

The transmissible torques or axial forces listed on the following page are subject to the following tolerances, surface characteristics and material requirements. Please contact us in the case of deviations.

Tolerances
- h8 for shaft diameter d
- H8 for hub bore D

Surfaces
Average surface roughness at the contact surfaces between the shaft and the hub bore:
\[R_z = 10 \ldots 25 \mu m. \]

Materials
The following apply to the shaft and the hub:
- E-module \(\geq 170 \text{kN/mm}^2 \)

Installation
Please request our installation and operating instructions for Cone Clamping Elements RLK 130.

Simultaneous transmission of torque and axial force

The transmissible torques M which are shown in the tables apply for axial forces \(F = 0 \text{kN} \) and conversely, the indicated axial forces \(F \) apply to torques \(M = 0 \text{Nm} \). If torque and axial force are to be transmitted simultaneously, the transmissible torque and the transmissible axial force are reduced. Please refer to the technical points on pages 72 and 73.

Example for ordering
Cone Clamping Element RLK 130 for shaft diameter \(d = 100 \text{mm} \):
- RLK 130, size 100 x 145
- Article number 4204-100001-000000
Cone Clamping Elements RLK 130

centres the hub to the shaft

very high transmissible torques

Dimensions

<table>
<thead>
<tr>
<th>Size</th>
<th>d</th>
<th>D</th>
<th>B</th>
<th>L1</th>
<th>L2</th>
<th>Yield strength R_y of the hub material (N/mm²)</th>
<th>Transmissible torque or contact pressure at 1 turn of the transmissible torque or axial force (Nm)</th>
<th>Technical Data</th>
<th>Article number</th>
</tr>
</thead>
</table>

Transmissible torque or contact pressure at 1 turn of the transmissible torque or axial force (Nm)

<table>
<thead>
<tr>
<th>Size</th>
<th>d</th>
<th>D</th>
<th>B</th>
<th>L1</th>
<th>L2</th>
<th>Yield strength R_y of the hub material (N/mm²)</th>
<th>Transmissible torque or contact pressure at 1 turn of the transmissible torque or axial force (Nm)</th>
<th>Technical Data</th>
<th>Article number</th>
</tr>
</thead>
</table>

Technical Data

<table>
<thead>
<tr>
<th>Size</th>
<th>d</th>
<th>D</th>
<th>B</th>
<th>L1</th>
<th>L2</th>
<th>Yield strength R_y of the hub material (N/mm²)</th>
<th>Transmissible torque or contact pressure at 1 turn of the transmissible torque or axial force (Nm)</th>
<th>Technical Data</th>
<th>Article number</th>
</tr>
</thead>
</table>

Chart:

- **Dimensions**: Includes values for various dimensions such as d, D, B, $L1$, and $L2$.
- **Yield strength R_y**: Values range from 20 to 180.
- **Transmissible torque at 1 turn of the transmissible torque**: Values range from 50 to 9,000.
- **Technical Data**: Includes data on contact pressure, tightening number, and weight.
- **Article number**: Includes a range of numbers from 4204-020001-000000 to 4204-180001-000000.